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Abstract
A single yttrium hydride thin film is conveniently driven through the T = 0
metal–insulator transition by fine-tuning the charge carrier density n via
persistent photoconductivity at low temperature. Simultaneously, electrical
conductivity and Hall measurements are performed for temperatures T down
to 350 mK and magnetic fields up to 14 T. A scaling analysis is applied and
critical exponents, resolved separately on the metallic and insulating sides of the
critical region, are determined consistently. We introduce corrections to scaling
to invoke collapse of the data onto a single master curve over an extended region
of the (n, T ) phase diagram.

1. Introduction

The spectacular, reversible optical and electrical properties of thin-film rare-earth hydrides
(REHx) for hydrogen content 2 < x < 3 at room temperature have been assumed from their
discovery [1] to reflect a continuous metal–insulator (MI) transition at the absolute zero of
temperature. Through high-resolution studies at sub-kelvin temperatures, we show [2, 3] that
the characteristic response of thin-film YHx , the prototype of these ‘switchable mirrors’, is
indeed connected to a continuous quantum phase transition—a fundamental change of the
ground state of the system as a function of a tuning parameter other than temperature T [4].
We are able to drive a single sample through the T = 0 MI transition by systematically tuning
its charge carrier density n via alternating use of hydrogenation at room temperature (RT)
and persistent photoconductivity (PPC) at low T [5], where hydrogen diffusion is negligible.
The transition is monitored by measuring the electrical conductivity σ for T down to 0.3 K
in magnetic fields up to 14 T. The charge carrier density n is accurately determined from
Hall measurements, under the assumption of a single-band model (see [2] and [6] for further
details of the sample and experimental methods). The resulting σ(n, T ) data are consistently
interleaved, indicating a common mechanism of charge carrier doping for both tuning methods,
although only n changes with PPC, while both x and n vary with hydrogenation. The use of
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thin-film REHx is crucial to the success of the experiment: bulk samples pulverize due to
the large volume expansion that accompanies hydrogenation, while clamping of the substrate
inhibits powdering of thin films. Comparison of σ(T ) for polycrystalline and epitaxial films
with σ(T ) for bulk samples of YHx indicates that the effect of stresses from (thermal) mismatch
with the substrate is negligible.

The existence of various transitions as a function of T for REHx powder samples at
fixed x has been extensively examined and discussed in the literature. For such thermal
phase transitions, a critical temperature TM I is associated with the change in sign of the slope
of σ(T ) [7]. For example, for 2 � x < 3 a thermal transition typically occurs around
TM I

∼= 250 K which is attributed to hydrogen vacancy ordering at octahedral sites, i.e. H
atoms ‘freeze’ in a disordered superstructure [8]. In contrast, we investigate a unique MI
transition as a function of n for thin-film YHx at T = 0 K. For this quantum phase transition,
the critical charge carrier density nc is defined as the value at which the residual conductivity
σ(n, T = 0) ≡ σ0(n) changes from a finite value in the metallic phase (n > nc) to zero in
the insulating phase (n < nc). We determine n both at T = 0.35 K, close to the lowest T
available to us in a 3He cryostat, and at 15 K, where n can be accurately determined from
ρxy-measurements without the need of ρxx -compensation which becomes necessary in the
insulating phase at low T . The scaling analysis which we present and apply to our σ(n, T )

data yields the same results using either n(0.35 K) or n(15 K). This indicates that n at fixed
T is a good tuning parameter, even in the presence of carrier freeze-out [9]. We therefore
omit the temperature index for n unless necessary for clarity and in the figure captions for
completeness.

The scaling analysis presented here is based on predictions of quantum scaling theory for
continuous T = 0 MI transitions in the presence of disorder and electron correlations [10].
We use it to determine the static and dynamic critical exponents which characterize the nature
of the underlying T = 0 MI transition. Values from the scaling analysis in the insulating
phase and from collapse of data to a single master curve in the critical region are consistent
with values independently found from the scaling analysis in the metallic phase. The present
analysis differs from the one applied before [2, 3] in that we include a priori n-dependent
corrections. This approach extends the region of the (n, T ) phase diagram over which data
collapse can be found and leads to a straightforward interpretation of the conditions under
which it fails. The introduction of corrections to scaling does not affect the value of the critical
exponents. The unusually large magnitude of the product of the dynamic and static critical
exponents, zν = 6.0 ± 0.5, appears to indicate the important role played by electron–electron
interactions at the T = 0 MI transition of YHx , in accord with earlier theoretical predictions
for the nature of the insulating state of YH3 [11].

2. Scaling analysis

A continuous quantum phase transition involves a correlation length ξ and a correlation
time ξτ which diverge as functions of the tuning parameter, i.e. ξ(n) ∝ |n/nc − 1|−ν and
ξτ (n) ∝ |n/nc −1|−zν , with ν and z the static and dynamic critical exponents, respectively [4].
At a continuous T = 0 MI transition, σ0(n) vanishes continuously to 0 in the metal with
power-law dependence on the tuning parameter n:

σ0(n) = σ00(n/nc − 1)µ, n ↓ nc, (1)

where µ is the conductivity exponent, and σ0(n < nc) ≡ 0 in the insulating phase.
Furthermore, the critical conductivity curve σ(n = nc, T ) ≡ σc(T ) is expected to have
power-law behaviour as a function of T :

σc(T ) = AcT µ/zν, n = nc, T → 0. (2)
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Figure 1. Electrical conductivity σ versus temperature T of a single yttrium hydride thin film, for
various values of the charge carrier density n (solid curves). The critical conductivity curve σc(T )

at the T = 0 MI transition is shown as a dashed line. From top to bottom: n(0.35 K) = 2.5, 2.32,
2.12, 1.88, 1.64, 1.51, 1.45, 1.18, 1.07, 0.89 × 1019 cm−3; n(15 K) = 2.04, 1.97, 1.82, 1.65, 1.53,
1.36, 1.24, 1.14, 1.04, 0.94, 0.87, 0.77, 0.73, 0.67 × 1019 cm−3.

A log–log plot of σ versus T is best suited for an initial identification of such power-law
behaviour. The upper seven curves in figure 1 have positive curvature (extrapolating to finite
σ0), while the other curves have negative curvature (extrapolating to σ0 = 0); consequently,
there must be a zero-curvature line in between (corresponding to power-law behaviour, with
σ0 = 0). An unusually small power µ/zν = 1/6 can be estimated from the slope of the curves
in the critical region in figure 1. Indeed, on a linear scale only a plot of σ versus T p with
power p = 0.167 ± 0.015 produces straight lines (figure 2). The initial report of logarithmic
temperature behaviour at higher T of the resistivity of thin-film YHx by Huiberts et al [9] is
less accurate: power-law behaviour T p with small power p is easily misinterpreted as ln T

behaviour, since T p
p→0≈ 1 + p ln T for T not too small. We observe power-law behaviour

over at least three decades in T , permitting us to accurately determine σ0(n), nc, and Ac from
extrapolation. To that end, and in accord with equations (1) and (2), we fit

σ(n, T ) = σ0(n) + AM(n)T µ/zν , n ↓ nc, T → 0 (3)

to the various curves in the metallic part of the critical region in figure 2. Here we introduce an
n-dependent correction: we do not fix the prefactor to Ac but allow AM to vary with n, where
AM(n = nc) ≡ Ac.

Instead of a conductivity jump of the order of σMott = 30 �−1 cm−1, which is expected
in the case of a discontinuous T = 0 MI transition, we find that σ0(n) continuously drops
to 0 at nc(0.35 K) = 1.39 ± 0.03 × 1019 cm−3 (see figure 2 inset, right axis) or at
nc(15 K) = 2.8 ± 0.1 × 1019 cm−3 (not shown). The occurrence of a simultaneous structural
transition can be ruled out, since it would wash out any continuous quantum critical behaviour.
This is corroborated by our finding that the transition takes place for x > 2.86, i.e. in the purely
hcp γ -phase of YHx . We determine the hydrogen content x for measurements up to RT by
comparison of σ (RT) with values obtained in electrolysis experiments [12] and conclude that
2.86 < xc < 2.93 (with xc the critical hydrogen content corresponding to nc). Moreover, it is
unlikely that the formation of an octahedral hydrogen superlattice structure is at the origin of the
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Figure 2. A replot of the data in figure 1 to emphasize the power-law behaviour of the conductivity
σ with temperature T (solid lines), expected on the metallic side of the critical conductivity curve
σc(T ) (dashed line). Dotted lines are linear fits according to equation (3) in the text. From top
to bottom: n(0.35 K) = 1.64, 1.51, 1.45, 1.18, 1.07, 0.89, 0.75, 0.5 × 1019 cm−3. Inset: The
residual conductivity σ0 (squares, right axis) and prefactors AM (triangles, left axis) as a function
of the charge carrier density n at T = 0.35 K. They are determined as the abscissa and slope,
respectively, of the fits in the main figure.

T = 0 MI transition since seven such structures are theoretically predicted and experimentally
identified [8], while only one T = 0 MI transition is observed. However, hydrogen vacancy
ordering could be responsible for PPC and play a role in charge carrier doping,similar to the role
that oxygen vacancy ordering plays for PPC in the high-Tc superconductor YBa2Cu3O7−δ [13].
We emphasize that PPC also exists in the metallic phase and the T = 0 MI transition can be
traversed using PPC alone (e.g. curves 5–10 from above in figure 1).

With nc identified, Ac ≡ AM(n = nc) = 18.8 ± 0.3 �−1 cm−1 K−1/6 is determined
simply from AM(n) (see figure 2 inset, left axis). The critical conductivity curve σc(T ) is then
specified. The conductivity exponent µ can be identified from the slope of σ0 versus (n−nc)/nc

according to equation (1). We find µ = 1.0±0.1 (see figure 4, right axis), giving zν = 6.0±1.1.
This value is much higher than the zν = 2 which has been derived from scaling analyses of the
amorphous alloy NbSi [14] and the doped semiconductor Si:P [15], where the MI transition is
governed mainly by disorder (Anderson limit). It is only comparable to zν = 4.6 ± 0.4 found
for the Mott–Hubbard transition metal compound NiS2−x Sex [16], where a large value of zν
seems to mark a continuous MI transition in the highly correlated limit. Theoretically it has
been shown [11] that the formation of an inverted Zhang–Rice singlet (i.e. the hybridization of
a 1s H orbital with an almost empty 4d Y orbital) can lead to the observed 3 eV optical gap of
YH3. It still remains an open question whether the corresponding effective Hamiltonian also
produces the large critical exponent values observed here.
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Figure 3. A replot of the data in figure 1 to single out the exponential behaviour of σ(T ) (solid
lines), expected on the insulating side of the critical conductivity curve σc(T ) (dashed line). Dotted
lines are linear fits according to equation (4) in the text. From top to bottom: n(15 K) = 2.95,
2.83, 2.59, 2.43, 2.32, 2.04, 1.97, 1.82, 1.65, 1.53, 1.36, 1.24, 1.14, 1.04, 0.94, 0.87, 0.77, 0.73,
0.67 × 1019 cm−3. Inset: the Coulomb gap temperature T0 (triangles, left axis) and the natural
logarithm of the prefactors AI (diamonds, right axis) as a function of the charge carrier density n
at T = 15 K. They are determined as the slope and abscissa, respectively, of the fits in the main
figure.

In order to describe our data on the insulator, we account for thermal activation over a
Coulomb gap via [14, 15]

σ(n, T ) = AI (n)T µ/zν exp −(T0(n)/T )β, n ↑ nc, T → 0 (4)

where kB T0 is the Coulomb gap energy with T0(n > nc) ≡ 0. Again, we introduce an
n-dependent correction: we do not fix the prefactor to Ac but explicitly allow AI to vary
with n, where AI (n = nc) ≡ Ac. With µ/zν = 1/6 found above, β is determined by
plotting ln(σ/T 1/6) versus T −β for various values of β and looking for linear behaviour, as is
expected from equation (4). Only for β = 0.50 ± 0.02 do we find such linear behaviour over
an extended T -interval (see figure 3). This value is predicted for Efros–Shklovskii hopping
transport in the case of a soft Coulomb gap due to electron–electron interactions, another
indication of the dominant role of strong correlations at the T = 0 MI transition of YHx .

With β known, AI (n) can be determined from the abscissa in figure 3 and we find
Ac ≡ AI (nc) = 20.0 ± 1.0 �−1 cm−1 K−1/6 (see figure 3 inset, right axis). The Coulomb
gap temperature T0(n) can now be determined from the slope of the curves in figure 3 (see
figure 3 inset, left axis): it drops continuously to zero at nc(15 K) = 2.8 ± 0.1 × 1019 cm−3.
The Coulomb gap energy is related to the dielectric constant κ and the correlation length ξ by
kB T0 = (2.8e2/4πε0)(κξ)−1 [17]. Consequently,

T0(n) = T00(1 − n/nc)
zν , n ↑ nc, (5)
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Figure 4. Residual conductivity σ0 (squares, right axis) and Coulomb gap temperature T 1/6
0 (circles,

left axis) as a function of the distance to the quantum critical point, n − nc. Dotted lines are linear
fits to the σ0- and T 1/6

0 -data according to equations (1) and (5) in the text, respectively.

with κ(n) ∝ (1 − n/nc)
−(z−1)ν . The product zν of the dynamic and static critical exponents

can be determined from the slope of T0 versus (1 − n/nc) on a log–log plot, yielding
zν = 6.0 ± 0.1 (figure 4, left axis). The values of nc(15 K), Ac, and zν found by these
fits for the insulator are consistent with the ones previously determined independently for the
metal, confirming the validity of our analysis.

Finally, we regard the prediction by quantum scaling theory of data collapse onto a
universal curve for n → nc:

σ/σc = FM([n − nc]/ncT 1/zν), n ↓ nc, T → 0, (6a)

σ/σc = FI ([nc − n]/ncT 1/zν), n ↑ nc, T → 0, (6b)

i.e. on the metallic (insulating) side of the critical point all σ(n, T ) curves, normalized to the
critical conductivity curve, can be described by a single function FM (FI ), which is dependent
solely on the scaling variable |n − nc|/ncT 1/zν . However, by not fixing the prefactors AM

and AI to Ac (in equations (3) and (4)) and allowing them to vary with n, we also introduce
n-dependent corrections to data collapse. This becomes apparent when explicitly rewriting
equations (3) and (4) (using equations (1), (2) and (5)) as

σ/σc = (σ00/Ac)([n − nc]/ncT 1/zν)µ + AM(n)/Ac, n ↓ nc, T → 0, (7a)

σ/σc = (AI (n)/Ac) exp −T β

00([nc − n]/ncT 1/zν)βzν n ↑ nc, T → 0. (7b)

When comparing equations (6) and (7), it is clear that we add a correction term
(1− AM(n)/Ac) to the left-hand side of equation (6a), while the left-hand side of equation (6b)
is multiplied by a correction factor Ac/AI (n).

Fixing nc to the previously found values and allowing zν to vary, data collapse according
to equation (6a) is indeed observed for zν = 6.0 ± 0.5 (see figure 5, left axis) in the (n, T )

range of the metallic phase that we experimentally probe, i.e. 0.04 < n/nc − 1 < 0.8 and
0.3 K < T < 50 K. In the absence of a quantitative calculation of the range of the critical
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Figure 5. Collapse of the conductivity data σ(n, T ) from figure 1 onto a universal curve. For the
metal, σ(n, T ) is normalized to the critical conductivity curve σc(T ) (filled symbols, left axis) and
plotted as a function of the scaling parameter |n − nc |/ncT 1/zν , according to equation (6a). Here
ν and z are the static and dynamic critical exponents, respectively. To invoke data collapse for the
insulator, the normalized data have to be multiplied by a correction factor as described in the text
(open symbols, right axis). Inset: the prefactors AM (n) of the metallic curves (upward-pointing
triangles) and AI (n) of the insulating curves (closed diamonds) as a function of the distance to the
quantum critical point. The open diamonds represent AI (n) according to equation (8) in the text.
This description fails for 1 − n/nc < 0.5.

region and without a theoretical criterion for true overlap of data, we tentatively estimate
the extent of the critical region in the metallic phase from the observed data collapse. For
n/nc − 1 < 0.1 the critical region ranges at least from T = 50 K down to 0.3 K, while for
0.4 < n/nc − 1 < 0.8 it only reaches down to approximately 10 K: deviations from a single
master curve clearly appear at low T for n further from nc (see figure 5, metal). Application
of the correction term does not lead to a change of these results, as expected from the weak
variation of AM(n) for n ↓ 0 (see figure 5 inset).

By contrast, data collapse according to equation (6b) is not observed for any zν in
the (n, T ) range of the insulating phase that we probe, i.e. 0.13 < 1 − n/nc < 0.8 and
0.3 K < T < 50 K—although this includes a range of values of |n/nc − 1| and T where
data collapse does exist for the metal. Only application of the correction factor leads to data
collapse, again for zν = 6.0 ± 0.5 (see figure 5, insulator), now for 1 − n/nc < 0.8 but
at temperatures from approximately 20 K down to at least 0.3 K. This is in contrast to the
n-dependent correction a posteriori introduced in [3], which invokes data collapse in the same
temperature range, but only for 0.5 < 1 − n/nc < 0.8. There we noted that the ln(σ/T 1/6)

versus T −1/2 curves with T0(n) > 0.55 K intersect in a single point, implying that AI (n) for
these curves is well described by

AI (n) = Ac exp −(1 + αT β

0 (n)), (8)
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with α = 0.39. However, this description fails for curves with T0(n) < 0.55 K (see the inset in
figure 5). The present analysis leads to a straightforward interpretation of the observed failure
of universal scaling in the absence of corrections, but at the cost of obscuring the simple form
of the corrections to scaling given by equation (8): the need for large, almost exponentially
varying corrections AI (n) (see figure 5 inset) indicates that the insulating side of the critical
region has a smaller extent than its metallic counterpart. We predict collapse onto a universal
curve without corrections to occur for the insulator for |n/nc − 1| � 0.13, while for the metal
we expect that it should extend beyond |n/nc − 1| > 0.8, ranges which are not covered by our
present experiments.

We conclude by emphasizing that a consistent value for zν is found via all the methods
discussed above. Furthermore, when comparing the values of zν, nc, and Ac to those
determined in the analyses of [2] and [3], we find, as we should, that they are unaffected
by the a priori introduction of n-dependent corrections.

3. Summary

In summary, we determine σ(n, T ) of a single YHx thin film while driving it through the
T = 0 MI transition using hydrogenation at RT and PPC at low T . Values of the conductivity
exponent µ and the product of the dynamic and static exponents zν are determined from a
scaling analysis. On the insulating side of the quantum critical point we find zν = 6.0 ± 0.1,
consistent with zν = 6.0 ± 1.1 and µ = 1.0 ± 0.1 independently determined on the metallic
side. Collapse of the data onto a master curve is observed for our data in the metal for
zν = 6.0 ± 0.5. However, n-dependent corrections have to be introduced to invoke data
collapse for the insulator, again for zν = 6.0±0.5. Since the insulating data set covers a range
of the (n, T ) phase diagram equivalent to that for the metallic data, this indicates that the critical
region extends further on the metallic than on the insulating side. The agreement between the
values of zν determined in various ways validates the proposed scaling analysis. The large
value of zν appears to indicate the important role played by electron–electron interactions in
the physics of the switchable mirrors.
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